Effect of nitric oxide on epithelial ion transports in noncystic fibrosis and cystic fibrosis human proximal and distal airways.
نویسندگان
چکیده
The airways of patients with cystic fibrosis (CF) exhibit decreased nitric oxide (NO) concentrations, which might affect airway function. The aim of this study was to determine the effects of NO on ion transport in human airway epithelia. Primary cultures of non-CF and CF bronchial and bronchiolar epithelial cells were exposed to the NO donor sodium nitroprusside (SNP), and bioelectric variables were measured in Ussing chambers. Amiloride was added to inhibit the Na(+) channel ENaC, and forskolin and ATP were added successively to stimulate cAMP- and Ca(2+)-dependent Cl(-) secretions, respectively. The involvement of cGMP was assessed by measuring the intracellular cGMP concentration in bronchial cells exposed to SNP and the ion transports in cultures exposed to 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (ODQ), or to 8Z, a cocktail of 8-bromo-cGMP and zaprinast (phosphodiesterase 5 inhibitor). SNP decreased the baseline short-circuit current (I(sc)) and the changes in I(sc) induced by amiloride, forskolin, and ATP in non-CF bronchial and bronchiolar cultures. The mechanism of this inhibition was studied in bronchial cells. SNP increased the intracellular cGMP concentration ([cGMP](i)). The inhibitory effect of SNP was abolished by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO scavenger (PTIO) and ODQ and was partly mimicked by increasing [cGMP](i). In CF cultures, SNP did not significantly modify ion transport; in CF bronchial cells, 8Z had no effect; however, SNP increased the [cGMP](i). In conclusion, exogenous NO may reduce transepithelial Na(+) absorption and Cl(-) secretion in human non-CF airway epithelia through a cGMP-dependent pathway. In CF airways, the NO/cGMP pathway appears to exert no effect on transepithelial ion transport.
منابع مشابه
L-Arginine Deficiency in Cystic Fibrosis Lung Disease
Cystic fibrosis affects multiple organs but lung disease remains the major determinant of patient morbidity and mortality. Cystic fibrosis lung disease is characterized by chronic infection and inflammation. The amino acid L-arginine is substrate for both nitric oxide synthases and arginases. The activity of arginase in sputum is increased while the production of nitric oxide is reduced in the ...
متن کاملEffect of growth hormone therapy on nitric oxide formation in cystic fibrosis patients.
Airway nitric oxide production is decreased in cystic fibrosis. As growth hormone therapy has been shown to increase nitric oxide production in growth hormone-deficient patients, it may also affect nitric oxide production in patients with cystic fibrosis. The objective of the present study was to investigate the effect of growth hormone therapy on systemic and airway nitric oxide formation in p...
متن کاملShort-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth.
The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem 1.99±0.36 mM).SCFAs po...
متن کاملExhaled nitric oxide is not elevated in the inflammatory airways diseases of cystic fibrosis and bronchiectasis.
Airways inflammation has been associated with increased nitric oxide (NO) in the exhaled breath. It was, therefore, questioned whether exhaled NO could act as an indicator of the severity of airways inflammation in the chronic suppurative lung diseases cystic fibrosis (CF) and bronchiectasis. NO levels in a single exhalation were measured using a chemiluminescence analyser. Thirty-six patients ...
متن کاملNitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide.
BACKGROUND Nitric oxide (NO) is released by activated macrophages, neutrophils, and stimulated bronchial epithelial cells. Exhaled NO has been shown to be increased in patients with asthma and has been put forward as a marker of airways inflammation. However, we have found that exhaled NO is not raised in patients with cystic fibrosis, even during infective pulmonary exacerbation. One reason fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 303 7 شماره
صفحات -
تاریخ انتشار 2012